

The Identification of α -Ketoamides as Potent Inhibitors of Hepatitis C Virus NS3-4A Proteinase

J. M. Bennett,^b A. D. Campbell,^a A. J. Campbell,^a M. G. Carr,^a R. M. Dunsdon,^a J. R. Greening,^a D. N. Hurst,^a N. S. Jennings,^a P. S. Jones,^a S. Jordan,^a P. B. Kay,^a M. A. O'Brien,^a J. King-Underwood,^a T. M. Raynham,^a C. S. Wilkinson,^b T. C. I. Wilkinson,^b and F. X. Wilson,^a,*

^aDepartment of Chemistry, Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AY, UK ^bDepartment of Viral Diseases, Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AY, UK

Received 13 September 2000; revised 27 October 2000; accepted 16 November 2000

Abstract—Peptides based upon the non-prime side residues of the NS4A-4B cleavage site of hepatitis C virus (HCV) NS3-4A proteinase containing an α -ketoamide moiety in place of the scissile amide bond are potent inhibitors of this enzyme. © 2001 Elsevier Science Ltd. All rights reserved.

Hepatitis C virus (HCV) is the cause of the majority of cases of transfusion-associated hepatitis and a significant proportion of community-acquired hepatitis worldwide. Infection by HCV can lead to a range of clinical conditions including an asymptomatic carrier state, severe chronic active hepatitis, cirrhosis and, in some cases, hepatocellular carcinoma. Current therapies for HCV infection include treatment with interferon- α in combination with ribavirin, but this therapy is of only limited efficacy. Hence, a new treatment for the disease would be of great interest.

The HCV NS3 protein encodes a serine proteinase which is responsible for the cleavage at the NS3-4A, NS4A-4B, NS4B-5A, and NS5A-5B junctions in the viral polyprotein. The 54 amino acid NS4A protein is a co-factor which binds to the NS3 protein and enhances its proteolytic activity.³ This NS3-4A proteinase is one of the most intensively studied targets for HCV antiviral therapy.²

We recently described the design and synthesis of molecules such as 1 and 2, derived from the non-prime side residues of the NS4A-4B cleavage site of the proteinase.

- 1. E = CHO
- 2. $E = B(OH)_2$
- 3. E = COCONHR

These compounds incorporate an electrophile at the C-terminus of the P1-residue and are potent inhibitors of this enzyme. $^{4-6}$ The use of aldehydes and boronic acids to terminate the inhibitors at that point prevented exploration of the structure–activity relationships of the prime-side. Potent α -keto acids have been reported but again these terminate the inhibitor. The introduction of an α -keto amide functionality, to give inhibitors such as 3, should afford an electrophilic carbonyl, whilst retaining the opportunity of prime-side exploration. 8,9 We therefore undertook the synthesis of this class of inhibitors to determine their efficacy against HCV NS3-4A proteinase. 10 The synthesis of one such inhibitor 11 is outlined in Scheme 1. 12

^{*}Corresponding author. Tel.: +44-1707-366464; fax: +44-1707-373-504; e-mail: francis.wilson@roche.com

Scheme 1. (i) *N,O*-Dimethylhydroxylaminehydrochloride, diisopropylethylamine, hydroxybenzotriazole (HOBT), 1-(3-diethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), tetrahydrofuran, room temperature (rt), 16 h, 91%; (ii) LiAlH₄, tetrahydrofuran, 0°C, 30 min, 87%; (iii) acetone cyanohydrin, Et₃N, CH₂Cl₂, rt, 1.5 h, 93%; (iv) HCl, reflux, 17 h; (v) Boc₂O, NaHCO₃, H₂O, 3 days, 84% over two steps; (vi) BnNH₂, HOBT, EDCI, CH₂Cl₂, rt, 2 h, 76%; (vii) Dess–Martin periodinane, CH₂Cl₂, rt, 1 h, 65%; (viii) TsOH, MeCN, rt, 1 h, 91%; (ix) protected pentapeptide fragment EDCI, HOBT, *N*-ethyl morpholine, CH₂Cl₂, rt, 6 h, 32%; (x) TFA, 30 min, 76%.

Table 1.

Compound	\mathbf{P}_1	NHR	IC_{50} (nM)
4	CH ₂ CF ₃	NH ₂	7
5	CH_2CF_3	HN	4
6	CH ₂ CF ₃	HN	4
7	CH ₂ CF ₃	HN	1100
8	CH ₂ CF ₃	HN	7
9	CH ₂ CF ₃	HN	7
10	CH ₂ CF ₃	HNOH	4
11	CH ₂ CF ₃	HNOME	6
12	CH ₂ CF ₃	HN	4
13	CH ₂ CF ₃	HN	8
14	Bu	NH_2	11

Table 2. Activity of 14 against important human serine proteinases

	Enzyme	IC ₅₀ (nM)
1.	HCV NS3-4A Proteinase	11
2.	Elastase ¹⁴	12,000
3.	Chymotrypsin ¹⁵	300
4.	Trypsin ¹⁶	>200,000

Gratifyingly, as can be seen in Table 1, the activities 13 of the optimal α -ketoamides are all in the nanomolar range and are approximately 10-fold more potent than their corresponding aldehyde or boronic acid analogues. The primary amide in 4 can be substituted with benzyl or (2-naphthyl)-methyl moieties, which in turn can be substituted around the aromatic ring. The stereospecific nature of the interaction is clearly indicated by the effect of substitution at the 1-position where a 250-fold discrimination is observed for introduction of a chiral methyl group (compare compounds 6 and 7). Replacement of the CH₂CF₃ sidechain at P1 by butyl had little effect on potency, but improved the plasma stability of the compound.

These inhibitors also display selectivity for HCV NS3-4A proteinase over other important human serine proteinases. The data for inhibitor 14 is shown in Table 2.

In summary, the introduction of the α -ketoamide electrophile has led to the identification of highly potent inhibitors of the NS3-4A proteinase. Further work on this exciting class of inhibitors will be reported elsewhere. ¹⁷

References and Notes

- 1. Cuthbert, J. A. Clin. Microbiol. Rev. 1994, 7, 505.
- 2. Dymock, B. W.; Jones, P. S.; Wilson, F. X. Antiviral Chem. Chemother. 2000, 11, 79.
- 3. Bartenschlager, R. Antiviral Chem. Chemother. 1997, 8, 281 and references cited therein.
- 4. Attwood, M. R.; Bennett, J. M.; Campbell, A. D.; Canning, G. G. M.; Carr, M. G.; Dunsdon, R. M.; Greening, J. R.; Jones, P. S.; Kay, P. B.; Handa, B. K.; Hurst, D. N.; Jennings, N. S.; Jordan, S.; Keech, E.; O'Brien, M. A.; Overton, H. A.; King-Underwood, J.; Raynham, T. M.; Stenson, K. P.; Wilkinson, C. S.; Wilkinson, T. C. I.; Wilson, F. X. Antiviral Chem. Chemother. 1999, 10, 259.
- 5. Attwood, M. R.; Hurst, D. N.; Jones, P. S.; Kay, P. B.; Raynham, T. M.; Wilson, F. X. Patent WO9822496A2.

- 6. Attwood, M. R.; Hurst, D. N.; Jones, P. S.; Kay, P. B.; Raynham, T. M.; Wilson, F. X. Patent GB2337262A1.
- 7. Di Marco, S.; Rizzi, M.; Volpari, C.; Walsh, M. A.; Narjes, F.; Colarusso, S.; De Francesco, R.; Matassa, V. G.; Sollazzo, M. J. Biol. Chem. 2000, 275, 7152.
- 8. Edwards, P. D.; Bernstein, P. R. Med. Res. Rev. 1994, 14, 127 and references cited therein.
- 9. In the course of this work others have reported α -ketoamides as HCV NS3-4A proteinase inhibitors: Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P. Biorg. Med. Chem. Lett. 2000, 10, 711. Also ref 2 and references cited therein.
- 10. Hurst, D. N.; Jones, P. S.; Kay, P. B.; Raynham, T. M.; Wilson, F. X. Patent GB2338482A1.

- 11. All novel compounds were characterised by ¹H NMR and HPLC.
- 12. The protected peptide fragment is Succ(OtBu)-Asp(OtBu)-Glu(OtBu)-(oMe)Phe-tBuGly-Leu-OH prepared as described in ref 10.
- 13. The inhibition of HCV NS3-4A proteinase activity was determined as reported in ref 4.
- 14. Castillo, M. J.; Nakajima, K.; Zimmerman, M.; Powers, J. C. Anal. Biochem. 1979, 99, 53.
- 15. Oleksyszyn, J.; Powers, J. C. Biochemistry 1991, 30, 485.
- 16. Kanaoka, Y.; Takahashi, T.; Nakayama, H.; Takada, K.; Kimura, T.; Sakakibara, S. Chem. Pharm. Bull. 1977, 25, 3126.
- 17. Manuscript in preparation.